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Abstract 

This deliverable reports the results of the pilot experiments carried out in controlled conditions by IBV, IXP, 

DSHS and USI to validate six algorithms to process physiological signals, eye-tracking measures and user 

movements that can be measured with the sensors associated to My-AHA, namely: (1) analysis of heart rate 

variability, (2) speech analysis, (3) activity recognition by electrooculography, (4) detection of eye 

movements and blinks, (5) sit-to-stand power, and (6) gait complexity. The results of those tests will be used 

as a basis for forthcoming decisions about the development of My-AHA platform and its associated modules. 
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Executive summary  

The deliverables D4.2, D4.3 and D4.4 of the project My-AHA present the definition of various algorithms 

that can be used to process physiological signals, eye-tracking measures and movements of the users, 

respectively, recorded by sensors associated to the original platforms that will be integrated into My-AHA. 

Those algorithms were evaluated and prioritised according to their relevance for the interventions that will be 

delivered by My-AHA, the effort required to implement them in the system, and their scientific and technical 

interest. 

This deliverable reports the results of the pilot experiments carried out in controlled conditions by IBV, IXP, 

DSHS and USI to validate six of those algorithms, two out of each group of measures, which have been 

selected according to the abovementioned criteria, namely: (1) analysis of heart rate variability, (2) speech 

analysis, (3) activity recognition by electrooculography, (4) detection of eye movements and blinks, (5) sit-

to-stand power, and (6) gait complexity. 

Heart rate variability (HRV) was analysed from the beat-to-beat time intervals captured by the Mio Alpha 

wristband, in static and dynamic activities (sitting, walking, running), and the results were compared with 

those delivered by a Polar sensor. The long-term and low frequency features of HRV resulted to be reliable, 

but short-term and high frequency features could not be successfully retrieved, presumably because of the 

filters implemented in the acquisition software to reduce the effects of noise and movement-induced 

artefacts. 

The analysis of speech features was used to evaluate the fatigue of people, and predict equivalent scores in 

the Karolinska Sleepiness Scale. The predicted scores were consistent with the self-reported values using the 

standard questionnaires, and resulted to be less dependent on the differences accross subjects than relying on 

their self report. 

A machine learning algorithm based on Support Vector Machines was used to analyse the 

electrooculographic data (EOG) given by the instrumented glasses produced by the Japanese company JINS 

MEME, in order to discriminate between reading, watching TV and drinking. The algorithm presented a 

success rate around 86%, much better than popular basic classifiers, depending on the training data and 

codebooks. 

The EOG signals of the JINS MEME glasses were also used to extract eye movements in the four main 

directions (up, down, left, right) and blinks. The recognition of eye movements was successful, with very 

high sensitivities and good specificities for the recognition of directional movements. On the other hand, the 

sensitivity to detect blinks was smaller, since they are faster actions that may be missed due to the limited 

sampling rate of the sensor. 

The muscle power during the sit-to-stand gesture was measured in laboratory by different methods, including 

high-quality photogrammetry and dynamometric platforms, and a simpler procedure with motion sensors that 

can be implemented in My-AHA, which yielded values of the average power during the rising phase that 

were in the same range as the gold standard measures. 

Different nonlinear measures of gait complexity, like recurrence quantification parameters and multiscale 

entropy, were computed for the acceleration signal retrieved from sensors continuously worn by older 

persons during real-life daily activities. That analysis proved to be feasible in terms of time and computer 

resources expenditure, in spite of the big amounts of data that have to be processed, and the outcomes 

resulted to be consistent with previous results reported in literature. 

These results will be used as a basis for forthcoming decisions about the development of My-AHA platform 

and its associated modules. 
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EOG Electrooculography 

FFT Fast Fourier Transform 
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HR Heart Rate 
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IBV Instituto de Biomecánica de Valencia 

IMR Interquartile-Median Ratio 
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L Average length of recurrent patterns (RQA parameter) 
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MFCC Mel Frequency Cepstral Coefficients 

MMSE Modified Multiscale Entropy 

MSE Multiscale Entropy 

NN “Normal-to-Normal” intervals (intervals between successive heart beats) 

RCMSE Refined Composite Multiscale Entropy 

RMSSD Root Mean Square of Successive Differences 

RQA Recurrence Quantification Analysis 

RR Recurrence Rate (RQA parameter) 

SDC Shifted Delta Cepstral 

SDNN Standard Deviation of NN intervals 

STS Sit-to-stand 

SVM Support Vector Machine 

TP Total Power 

TT Trapping Time (RQA parameter) 

USI University of Siegen 

VLF Very Low Frequency 
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1 Introduction 

One of the key features of My-AHA will be the automatic monitoring and collection of data related to 

movements, behaviours or other physical or physiological signs, which can be related to frailty symptoms, or 

may be used to tailor the intervention programs and give feedback about them to the users. Such monitoring 

will take place by collecting data from different sensors, associated to already existing platforms that will be 

integrated into My-AHA. 

During the first months of the project, the Consortium formed by the research centres, universities and 

companies involved in the development of My-AHA has also been investigating on methods to enhance the 

signals and obtain new parameters from the data delivered by the sensors, to feed the analytical models of 

frailty risk detection and monitor the interventions. That investigation resulted in a collection of algorithms 

to pre-process physiological signals, eye and body movements, which were presented in the deliverables 

D4.2, D4.3 and D4.4. 

The algorithms and associated measures presented in those deliverables have been evaluated during content 

and technical meetings of the project Consortium, taking into account their relevance for monitoring 

different types of intervention, and the complexity of implementing them in My-AHA and/or the original 

platforms. Tables 1, 2 and 3 present the full list of algorithms that were described in those deliverables, with 

the related frailty domains and the main highlights of the evaluation carried out by the Consortium. 

 

Table 1. Algorithms proposed to process physiological signals (D4.2) 

Algorithms Domains Comments 

Cardiac feature 

extraction 

Physical, 

cognitive, sleep, 

psychological 

Heart rate implemented in Beddit & wristbands like Mio Alpha. No variability 

calculations implemented in the devices. It can be used in the physical 

interventions (cardiovascular training). 

Respiration 

feature extraction 

Physical, sleep, 

psychological 

Breath lengths and frequencies implemented in Beddit. 

Speech feature 

extraction 

Cognitive, 

psychological 

Currently implemented in desktop application; to be implemented as mobile app 

for My-AHA. 

 

 

 

Table 2. Algorithms proposed to process eye movements (D4.3) 

Algorithms Domains Comments 

Analysis of eye 

movements and 

blinks 

Cognitive Attainable from JINS MEME glasses. Validation and comparison with gold 

standard is needed.  

Measurement of 

fatigue and 

drowsiness 

Physical, sleep Measured by blink rate and speed from JINS MEME glasses. It depends on the 

development of eye movement/blink detection. 

Machine-learning 

classifiers 

Physical, 

cognitive 

Measured by the EOG signal from the JINS MEME glasses. 
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Table 3. Algorithms proposed to process user movements (D4.4) 

Algorithms Domains Comments 

Step 

segmentation 

Physical Measured from accelerometer signals, currently not implemented. To be 

validated against gold standard. 

Measurement of 

walking activity 

Physical, sleep, 

psychological 

High priority for interventions. Fully implemented in Smart Companion and 

Medisana activity trackers. 

Gait speed Physical High priority for interventions. Fully implemented in Smart Companion and 

Medisana activity trackers 

Gait variability Physical High priority for interventions. Fully implemented in Smart Companion 

Gait complexity Physical Measured from accelerometer signals, currently not implemented. Must verify 

that the computational resources needed to implement it are feasible. 

Medial-lateral 

control 

Physical Measured from accelerometer signals, not implemented. To be validated against 

gold standard. 

Unassisted tests 

(Sit-to-stand, 

TUG, One Leg, 

sway) 

Physical Partially implemented in modules that can be associated to the Smart 

Companion / Smart Feet. Highest priority among missing features given to the 

measure of Sit-to-stand power. 

Trend Analysis Physical Developed for iStoppFalls movement data. 

 

For each group of variables (physiological signals, eye tracking, and user movements) we have selected two 

algorithms to be validated and further developed. This selection has been done on the basis of the following 

criteria: 

1. Relevance for the interventions delivered by My-AHA. 

2. Feasibility of retrieving the required signals from one or more devices that can be integrated into 

My-AHA. 

3. Complexity of implementation. 

4. Scientific-technical interest of implementing and testing it for real-life monitoring (still not present 

in the commercial devices). 

The algorithms that have been selected are: 

 For the analysis of physiological signals: 

o Heart rate variability measures from the Mio Alpha wristband sensor. 

o Speech feature extraction during voice interaction to evaluate the level of fatigue/tiredness. 

 For eye tracking (with the JINS MEME glasses): 

o Activity classification from EOG data. 

o Detection of gaze movements and blinks. 

 For user movements: 

o Sit-to-stand power (muscle strength). 

o Gait complexity. 

This deliverable reports the results of the pilot experiments carried out by IBV, IXP, DSHS and USI to 

validate those methods. Those results will be used as a basis in forthcoming decisions for the development of 

My-AHA platform and its associated modules. 
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2 Heart rate and heart rate variability 

2.1 Objectives of the validation 

Wrist-worn trackers like Mio Alpha are focused on the correct detection of heart pulses to measure heart rate 

(HR). That parameter is useful to monitor cardiovascular training, which is often the purpose of such 

devices. But in relation with the ageing process, the analysis of heart rate variability (HRV) is also relevant, 

since it can quantify the loss of autonomic influences on HR regulation as a function of age (Antelmi et al. 

2004; Lipsitz et al. 1990). 

There are many estimators of HRV, based on time or frequency domain features of the NN interval time 

series (the sequence of beat-to-beat time intervals). Among time domain features the most common are: 

 The standard deviation of NN intervals (SDNN), related to the overall variation of HR along the 

whole record. 

 The root mean square of successive differences (RMSSD), related to the immediate variation of NN 

intervals. 

 The percent of successive NN intervals that differ more than 50 ms from each other (pNN50). 

Frequency domain features are based on the power of the NN time series within different frequency bands: 

 Total power of the signal (TP). 

 Power in the “very low frequency” band (VLF), below 0.04 Hz. 

 Power in the “low frequency” band (LF), between 0.04 Hz and 0.15 Hz. 

 Power in the “high frequency” band (HF), between 0.15 Hz and 0.4 Hz. 

There are also normalised measures of the frequency domain features, based on ratios between the previous 

parameters. 

The frequency spectrum of the NN intervals is normally computed through the Fast Fourier Transform (FFT) 

of the time series, but that operation assumes that the signal is sampled at fixed intervals, which is not the 

case of the observed sequence of NN intervals, so for a strict computation of frequency domain features it is 

necessary to interpolate the observed sequence in an evenly spaced time line, at a frequency of 0.4 Hz or 

higher. However, for faster computations the FFT can be applied directly to the observed time series, 

assuming some level of error in the results. 

In the case of NN intervals measured by wrist-worn sensors like Mio Alpha, we can assume that there are 

other sources of error, derived from motion artefacts or the data filtering and other pre-processing that must 

be applied to the sensor data to rule out those artefacts. Therefore, it is questionable whether the HR and 

HRV parameters obtained from them are reliable, and if the complexity added by the interpolation makes 

any difference. The validation that has been carried out attempts to give an answer to those two particular 

questions. 

 

2.2 Material and methods 

HR and HRV were measured with the wrist-worn Mio Alpha sensor, and compared with a chest-worn Polar 

sensor during controlled experiments carried out in IBV. 10 young adults (5 male and 5 female, aged 

between 25 and 45) participated in experimental sessions, in which their cardiac activity was measured with 

those two sensors simultaneously, during two tasks: 

1. Sitting quiet during approximately 4 minutes, with controlled arm movements. 

2. Treadmill walking/running in 3 bouts at a progressively increasing speed: 4, 6, and 8 km/h. Each 

bout was 4-minutes long, with resting periods of 3 minutes at the beginning, at the end, and between 

each two bouts. 
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The NN intervals were extracted in real time from the Mio Alpha device by streaming the data via Bluetooth 

with the Cardiomood app (www.cardiomood.com), and from the Polar logs recorded by the Polar Protrainer 

application (www.polar.com). Polar data was considered as gold standard, as it has been demonstrated to be 

highly reliable compared with standard ECG (Nunan et al. 2008; Vanderlei et al. 2008; Weippert et al. 2010). 

The series of NN intervals taken from both devices were analysed both in the time and frequency domains, 

and the outcomes were compared to evaluate the similarity between HR and HRV measures obtained from 

each device. The analysis in the frequency domain was done with and without interpolation (using cubic 

splines), to compare the loss of accuracy that might be expected if the interpolation step is ruled out. 

Since the distributions of HR and HRV are typically right-skewed, the similarity between the results of both 

devices was evaluated as differences in a logarithmic scale, i.e. of ratios between HR and HRV parameters, 

instead of differences. 

 

2.3 Results 

2.3.1 Collected data and missing values 

The Polar sensor was firmly pressed against the user’s chest, and allowed a perfect detection of heart beats in 

the quiet measures, except in one user for which a significant amount of data was lost. The Bluetooth 

connection of Mio Alpha was temporarily interrupted in 80% of the measures, although in most cases the 

interruptions were short enough to be able to carry out the analysis, ruling out the data points before and after 

each interruption, which was detected by outliers in the distribution of the NN time series. All in all, it was 

possible to compare 15 out of the 20 records that were taken: 9 of the sitting task (ruling out the case with the 

loss of Polar data), and 6 of the walking/running task (ruling out 4 measures with significant data loss of Mio 

Alpha, which precluded a reliable comparison with the Polar records). 

2.3.2 Comparison of HR and HRV parameters 

The NN intervals recorded by Mio Alpha were highly correlated with those measured with Polar, although 

they were heavily smoothed, presumably due to the filters applied to cancel motion artefacts (see Figure 1). 

That smoothing had an important influence on HRV measures, specially those that assessed the short-term 

variability (in the time domain) and high frequency components (in the frequency domain). 

 

 
Figure 1. Example fragment of NN time series 

 

That influence is clearly seen in the plots of Figure 2 and Figure 3. Those figures show side by side the 

paired values of HR and HRV resulting from analysing the NN sequences with each device, and the ratios 

between those values (Mio w.r.t. Polar), with confidence intervals around the linear trends of the ratios as a 

function of the values measured with Polar. 

 

http://www.cardiomood.com/
http://www.polar.com/
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 Figure 2. Comparison of HRV time-domain features 
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Figure 3. Comparison of HRV frequency-domain features 
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It may be seen that HR values computed from Mio Alpha data were comparable to the gold standard 

measured by Polar. There was a small bias towards smaller values, but the overall ratio of Mio vs. Polar data 

was very close to the unit (between 0.91 and 1.02, with greater dispersion when the users were moving). 

The ratios of SDNN values were also around the unit, albeit with greater dispersion. On the other hand, 

RMSSD and pNN50 values were clearly underestimated. The decreasing linear trend of the ratios between 

Mio and Polar for those features are due to the fact that the values computed from Mio Alpha data were 

around a fixed range of values (approximately between 5 and 25 ms for RMSSD, and less than 10% for 

pNN50), regardless of the actual variations of that feature. Thus, although those HRV parameters should be 

smaller during walking and running compared to sitting (Chan et al. 2007), as observed with Polar, those 

variables did not show differences between tasks when they were calculated from Mio Alpha data. 

A similar situation happened with the frequency domain features of HRV: the power calculated from the data 

of Mio alpha in the whole spectrum of the signal (TP) and in the VLF band varied following a trend that was 

coherent with the measures taken with Polar, although there was a high dispersion, as happened in SDNN. In 

fact, TP and VLF provided basically the same information as SDNN for Mio Alpha data, since nearly the 

whole signal was contained in the VLF band (over 75% of power in all measures). On the other hand, the 

power of the LF and specially the HF band was severely underestimated. 

 

2.3.3 Influence of interpolation in frequency domain features 

As shown in Table 4, the frequency domain features of HRV calculated without interpolating the NN 

sequences were similar to the outcomes obtained from the interpolated time series (ratios between the results 

without interpolation vs. interpolated near to the unit). However, there was a significant bias towards higher 

ratios, i.e. the calculated powers were higher when the interpolation step was neglected, except in the LF 

band. 

Nevertheless, that bias is insignificant compared with the high errors in the LF and HF components that are 

reported in the previous section. On the other hand, the information contained in the TP and VLF bands is 

virtually equivalent to the results obtained from SDNN in the time domain, so all in all, the subtle differences 

between procedures to calculate frequency domain features can be considered to be irrelevant for practical 

purposes. 

 

 

Table 4. Statistics of the power of the NN signal in different frequency bands, including ratios of the 

power calculated without signal interpolation vs. calculations with the interpolated signal 

 Mean power std. dev. mean ratio Conf. interval of the ratio* t*(14) p-value* 

TP 7160.207 5290.330 1.073 1.007 - 1.132 2.408050 0.030 

VLF 6634.192 5286.604 1.078 1.005 - 1.142 2.309880 0.036 

LF  475.266  280.506 1.042 0.980 - 1.360 1.359964 0.195 

HF   39.051   20.037 1.101 1.030 - 1.181 3.180736 0.007 

(*) The statistical analysis is done for the differences of the logarithms of TP, VLF, LF and HF values. The confidence 

intervals of the ratios are calculated by exponentiation of the confidence intervals for the differences between logarithms. 
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3 Speech analysis 

3.1 Objectives of the validation 

The focus of the speech analysis tool is to extract features from the speaker’s audio signal which may 

indicate emotional or physiological states. This kind of parameters is a useful tool to monitor the state of the 

user without attaching anything directly to the body. This may also be implemented without obtrusive 

microphones as long as adequate noise reduction is applied.  

A prominent component of frailty is fatigue, which can be quantified through the Karolinska Sleepiness 

Scale (KSS) score. The KSS is a 9-point self-reported, verbally anchored scale that measures the subject’s 

fatigue, going from ‘extremely alert’ to ‘extremely sleepy/ fighting sleep’, which is closely related to 

encephalographic and behavioural indicators of alertness/sleepiness (Kaida et al. 2006), and it is frequently 

used in studies measuring subjective fatigue. 

The experiment presented in this report had the purpose of testing the validity of speech analysis as an 

objective tool to assess the fatigue of subjects interacting verbally with a computer-based application, 

compared to subjective assessments as measured by the KSS. 

 

3.2 Material and methods 

3.2.1 Set up and instruments 

For the identification of vigilance-induced phonetic-linguistic changes in the speech and the associated 

ascertainment of the necessary vocal data for the estimation of the available vigilance scoring, a 

corresponding technical setting was implemented in the control room simulation environment at Psyrecon 

GmbH by RFH Cologne. For this purpose a headset as well as a computer with corresponding recording 

software was provided, and a screen presentation was created, which could be controlled by the Proband 

experimental director (Figure 4). The purpose of this test arrangement was to record the speech samples of 

the subjects before and during the main task, to provide them with time stamps for each subject, and to store 

them together with a fatigue score estimated by the subject. 

Questionnaires were also drawn up for recording third-party variables. Variables that can influence vigilance, 

such as gender, age, height, weight, smoking status, cold status, regional dialect, and verbal intelligence were 

recorded. In the course of the acquisition, attention was paid to the age of the subjects and to an adapted 

diversity with regard to age class and gender. 

   

Figure 4. Graphical interface used in the speech analysis experiment 
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3.2.2 Subjects and tasks 

Measures were taken for 38 German-speaking adults, evenly distributed between male and female. Each 

subject participated in various sessions at different times of the day having slept normally and with 

deprivation of sleep. We recorded between 37 and 44 measures of the KSS scores for each subject, both 

verbally reported and predicted by the speech analysis. 

The speech tasks were composed of reading tasks (phonetically balanced texts such as “The North Wind and 

the Sun” as well as “The Butter Story”) and sentences like “How do I get to the Czech Embassy on Perle-

Baumgärtnerstrasse?” in German language. The verbal assessment of the fatigue of the subject as a self-

report on the KSS (“My current tiredness feeling is at x”) was also recorded. Additional language material 

was gained by tasks from the Thematic Conviction Test (free picture descriptions). 

During the recording of the speech samples, the experimenter and the subject were connected via a headset. 

The sentence “How do I get to the Czech Embassy on the Perle-Baumgärtnerstrasse?” was recorded in 4 

minute intervals during the main task. The fatigue questionnaire “My current fatigue feeling at x” was 

recorded in 8 minute intervals. The fatigue score reported by the subject was entered directly after the speech 

task by the researcher. 

3.2.3 Speech analysis 

There are many state estimation parameters that may extracted from a speech vector. Common speech 

analysis features are: 

 Mel Frequency Cepstral Coefficients (MFCC). MFCC are coefficients that collectively form Mel 

frequency cepstrum which is a power spectrum of a short window of a speech signal (i.e. 40 

milliseconds). MFCC tries to represent the shape of the vocal tract using the short term power 

spectrum thus trying to approximate human auditory system responses. 

 Shifted Delta Cepstral (SDC). Shifted Delta Cepstral coefficients are considered to be long term 

features which are derived using MFCCs. SDC has 4 parameters (N, d, p, k), described as follows: 

o N is the number of cepstral coefficients computed at each frame 

o d represents the time advance and delay for the delta computation 

o P is the time shift between consecutive blocks  

o k is the number of blocks whose delta coefficients are concatenated to form the final feature 

vector 

 Pitch. The pitch or fundamental frequency is considered to be a most basic discriminating factor 

between the male and female voice. 

In order to ensure standardization, the audio data used to acquire features mentioned above needs to be 

uniform in structure. For this reason the structure given for the audio signal to produce all extracted features 

was set to: 

 One second in length 

 Mono channel  

 44.1 kHz sampling frequency 

 16 bit data resolution 

The extracted features were used in conjunction with a machine learning model to estimate the fatigue score 

which correlates to the audio sample provided. The model used for the estimation had first to be trained on a 

database of audio files with associated KSS scores. This allowed for a large training set to be used for the 

estimation process, and was more likely to provide a more accurate estimation result. The model used can be 

from various structures such as: 

 Linear Regression Model  
http://eli.thegreenplace.net/2014/derivation-of-the-normal-equation-for-linear-regression/ 

o The hypothesis function for a linear model is given as: 

http://eli.thegreenplace.net/2014/derivation-of-the-normal-equation-for-linear-regression/
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o ℎ𝜃(𝑥) = 𝜃0𝑥0 + 𝜃1𝑥1 + ⋯ + 𝜃𝑛𝑥𝑛 

o Assuming that the matrix 𝑋𝑇𝑋 is invertible, we can simplify the calculation of the vector 𝜃 

such that: 𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦  

 Support Vector Machine (SVM)  
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html 

o Support Vector Machines are discriminative classifiers formally defined by a separating 

hyperplane. In other words, given labelled training data (supervised learning), the algorithm 

outputs an optimal hyperplane which categorizes new examples. 

o The notation used to define formally a hyperplane is: 

o 𝑓(𝑥) = 𝛽0 + 𝛽𝑇𝑥, where  𝛽 is know as the weight vector and 𝛽0 as the bias. 

 Gaussian Mixture Model  
http://www.ee.iisc.ac.in/people/faculty/prasantg/downloads/GMM_Tutorial_Reynolds.pdf 

o A Gaussian Mixture Model is a parametric probability density function represented as a 

weighted sum of Gaussian component densities. They are commonly used as a parametric 

model of the probability distribution of continuous measurements or features in a biometric 

system, such as vocal-tract related spectral features in a speaker recognition system. 

o A Gaussian mixture model is a weighted sum of M component Gaussian densities as given 

by the equation: 

o 𝑝(𝑥|𝜆) = ∑ 𝑤𝑖𝑔(𝑥|𝜇𝑖 , Σ𝑖)𝑀
𝑖=1 , where x is a D-dimensional continuous-valued data vector 

(i.e. measurement or features), wi, i = 1, . . . ,M, are the mixture weights, and 𝑔(𝑥|𝜇𝑖 , Σ𝑖) are 

the component Gaussian densities. 

3.2.4 Statistical analysis 

The KSS scores obtained by subject’s answers to the questionnaires and the scores predicted by the speech 

analysis were analysed, considering that they might depend on the state of the subjects (awake or tired), and 

that there might be a considerable variability across individuals. To account for those sources of variability, 

the following linear mixed model was fitted to the resulting data: 

𝑦𝑠𝑖𝑗 = 𝜇 + 𝛼𝑠 + 𝜂𝑖 + 𝜖𝑖𝑗, 

where: 

 𝑦𝑠𝑖𝑗  was the outcome of interest (the actual KSS score or its difference with the predicted one) for 

the measure j of the subject i in state s, 

 𝜇 is the average expected value in the control state (awake), 

 𝛼𝑠 is the expected increment on that average in the tired state, and 

 𝜂𝑖, 𝜖𝑖𝑗 are random effects due to the inter-subject and within-subject inherent variability to the 

measure, respectively. 

The variance of those random effects, and the expected scores and differences were analysed by an ANOVA 

of that model. 

 

3.3 Results 

3.3.1 Comparison of estimated KSS and supplied KSS 

Figure 5 shows the speech signal and its Mel frequency cepstrum of a person telling the word  

“tschechische” (“Czech” in German), both in the awake and tired states. 

 

http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://www.ee.iisc.ac.in/people/faculty/prasantg/downloads/GMM_Tutorial_Reynolds.pdf
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Figure 5. Example of awake person (up) and tired person (down) telling “tschechische” 

 

The reported KSS scores varied between the whole range of the scale (1 to 9). In the awake state the average 

score was around 4 (“rather alert”), with a standard deviation of 1.6 points; in the tired state the subjects 

tended to report higher levels of fatigue, such that the average value was slightly increased to 4.2, with the 

same standard deviation. 

The ANOVA on the actual KSS scores (Table 5) shows that such increase in the KSS score, albeit small, was 

statistically significant (p < 0.02), so the level of fatigue induced to the participants could be considered to be 

noticeable. The variability between subjects was approximately the same as the variability observed in the 

answers of the subjects in the same state (𝜎𝜂 = 1.16, 𝜎𝜖 = 1.11). 

 

Table 5. ANOVA of the actual KSS reported by the subjects 

 Value (std. err) F(1,1582) p-value 

𝜇 (expected value for awake) 4.06 (0.19) 466.24 0.000 

𝛼𝑠 (tired - awake) 0.13 (0.06) 5.45 0.020 

 

The KSS scores predicted by the speech analysis were around the same average values as the reported scores 

in both states, although the standard deviation was slightly reduced to 1.4. That decrement of variability was 

mainly due to more consistent predictions between subjects (𝜎𝜂 = 0.85), whereas the variability within 

subjects remained the same as for the reported KSS scores. 
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Figure 6. Differences between predicted and actual (reported) KSS scores 

 

Figure 6 shows the distributions of the differencse between actual and predicted scores. It may be observed 

that the differences were normally distributed in the same fashion for both states (awake and tired). 

The ANOVA (Table 6) shows that there is no significant difference between the scores in any of the states 

(the p value is exceedingly greater than 0.05 for the expected difference in the awake state, and also for the 

expected increment in the tired state). Thus, all differences between predicted and actual KSS scores could 

be regarded as random, unbiased errors. The standard deviation of such error was 𝜎𝜖 = 0.94 within subjects 

(about the same order of magnitude as the within-subjects variability of the actual KSS score), with an added 

error between subjects with 𝜎𝜂 = 0.38, which was smaller but still significant (p < 0.01). 

 

Table 6. ANOVA of the difference between predicted and actual KSS 

 Value (std. err) F(1,1582) p-value 

𝜇 (expected difference for awake) -0.040 (0.07) (0.07) 0.338 0.561 

𝛼𝑠 (tired - awake) 0.005 (0.05) (0.05) 0.012 0.912 
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4 Activity recognition with EOG data 

4.1 Objectives of the validation 

Recently, mobile devices equipped with different sensors have become very popular and accompany us in 

everyday activities collecting various kind of data. In case of eye-trackers, the availability of wearable 

devices that do not cause discomfort in human daily activities is somehow limited.  

The Japanese company JINS MEME came out with a project of intelligent glasses that comprise 

electrooculography (EOG) sensors along with built-in accelerometer and gyroscope. The EOG sensors, three 

electrodes placed around the nasal bridge provide the electrooculogram depicting the eyes movement with a 

series of values measured as a difference between the electric potential fields of the poles at right and left 

nose pads (respectively for the right and left eye) and the reference one of the pole located at the bridging 

part. Based on those two signals (EOGL and EOGR) another two are formulated to describe horizontal and 

vertical eye movement (EOGH and EOGV).  

Since the obtained information is a low-level sensor data expressed as a sequence representing values in 

constant intervals (depending on the JINS MEME application settings it is 50, 100 or 200Hz), the human 

activity recognition problem can be formulated as sequence classification. In order to categorize sequences 

of sensor values into appropriate activity class various machine learning classifiers were investigated: 

 Mean values, 

 Standard deviation, 

 Mean of absolute values of first differences, 

 Mean of absolute values of second differences, 

 Feature learning approach called “Codebook approach”. 

 

4.2 Materials and methods 

The EOG consisting of four data vectors (EOGL, EOGR, EOGH, EOGV) along with the accelerometer data 

were collected with the JINS MEME glasses during experiments in controlled environment at the 

laboratories of the University of Siegen. 100 adults, mostly the University students, participated in 

experimental sessions, in which their eye movements were recorded while performing one of the following 

three daily activities:  

a) reading a page of text in a participant native language, 

b) drinking mineral water, 

c) watching television. 

The data set obtained for each of these activities was around 30 seconds long. Since the sampling rate 

varying from 100 to 200 Hz is considered as high, the amount of data collected within that timeframe should 

be sufficient enough to be able to build an effective classifier. After each activity, participants took a short 

brake to calm their eyes.  

The EOG data and the accompanying accelerometer values were collected in real time from the JINS MEME 

glasses by the streaming the data via Bluetooth dongle with the application “JINS MEME Data Logger” 

provided by the manufacturer of glasses. 

The obtained data was divided into several train and test data sets and used in during experiments to evaluate 

the effectiveness of models based on different classifiers in the manner of activity recognition using SVM for 

machine learning.   

During the experiments another problem became visible in the obtained data. In case of reach facial mimics 

or when someone was not used to wearing glasses and tried to correct their position a lot of noise was 

introduced to the EOG signals. This is probably the outcome of the electrodes locations, which are very close 
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to each other – a less noisy signal could be obtained when reference electrode was located at the nasal bridge 

and the other two at the outer sides of each eye. 

 

 

 

 

Figure 7. Sample plots depicting the EOG signals collected during experiments. Activities in columns 

from the left: drinking, reading and watching television 

 

4.3 Results 

The first experiments involved the popular basic classifiers: mean values, standard deviation and the mean of 

absolute values of first and second differences. Results obtained with these classifiers were average. The best 

results were produced by the mean of absolute values of first and second difference (72,6% and 70,6% 

respectively), however the cross-reference with changed data sets produced the results around 50%. 
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Figure 8. Efficiency of activity recognition using popular classifiers: mean values (Mean), standard 

deviation (STD), mean absolute values of first differences (DIFF1) and mean absolute values of second 

differences (DIFF2). 

 

Other experiments were focused on the application of the Codebook approach in order to extract useful 

features from the collected EOG data. This solution divides sequences into subsequences that are grouped 

into clusters, called “codewords”, characterizing a statistically distinctive subsequence. Next step provides 

the sequence encoded as a feature representing the distribution of codewords. The Codebook approach 

produced improved and more consistent results reaching the level of 86% accurately classified activities. 

A slightly modified version of the codebook approach using the Fourier coefficients describing consecutive 

subsequences to build codewords was also investigated. This approach introduced a little of improvement 

conquering the result to 87,3%. 

Further work will focus on combining the feature vectors produced by codebook approach with the feature 

vectors obtained with classifiers presenting more global characteristics of the data sequence. Also, in case of 

codebook approach it is also worth investigating if the histograms could be replaced with other distribution 

models like Gaussian Mixture Model.   

In the matter of additional noise introduced  to the EOG signals by external factors several experiments were 

performed in order to investigate if pre-processing actions like smoothing, denoising and approximating the 

obtained EOG signals could improve the results. In most cases the pre-processing of the data does not 

improve the activity recognition accuracy, and in case of approximation the results were even worse than 

with original, noisy data.   
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Figure 9. Efficiency of activity recognition using the codebook approach to build the feature vectors. 

Best result 86% obtained for subsequences of size 8 and 128 clusters. 

 

 

Figure 10. Efficiency of activity recognition using the codebook approach utilizing the Fourier 

coefficients to build codewords and finally the feature vectors. Best result 87,3% obtained for 

subsequences of size 64 and 128 clusters 
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5 Eye movement extraction 

5.1 Objectives of the validation 

The EOG signals of the JINS MEME glasses can also be used to identify eye saccades in the four main 

directions (up, down, left, right) and blinks during quiet activities like reading, watching images, etc. Such 

features may be relevant to assess the cognitive activity of the elders, since changes in the duration of eye 

fixations, refixations, and saccade inhibition (lack of eye movements) are symptomatic of cognitive decline 

(Pereira et al. 2014). The experiment that is reported in this chapter was aimed at validating the reliability of 

a wavelet-based method to classify such movements that was presented in D4.4. 

 

5.2 Materials and methods 

Five young adults participated in a controlled experiment to verify the efficacy of the wavelet-based 

algorithm to detect gaze movements in horizontal (left-right) and vertical (up-down) directions and blinks. 

The subjects wore the academic version of the instrumented glasses, and sat in front of a computer screen in 

the laboratories of IBV. The JINS MEME data logger was started at the same time as the Tobii T120 eye 

tracker, which was used as auxiliary measure to verify the movements of the eyes and blinks. 

The subjects were instructed to look at varying directions when they heard an acoustic signal, that was 

triggered approximately every 3 seconds, during a period of 1 minute. A total between 18 and 28 movements 

were recorded for each user, distributed across the four directions so that there were between 2 and 7 

movements in each direction. The subjects were allowed to blink freely, so that the number of blinks was not 

fixed. 

The number of true and false events (eye movements or blinks) detected by the algorithm was recorded, as 

well as the events missed or wrongly classified. The sensitivity and specificity of the algorithm was 

calculated by the following parameters: 

 Sensitivity: ability to identify events. It is quantified as the ratio between correctly detected events 

and actual number of events of that type: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
#𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

#𝐴𝑐𝑡𝑢𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠
 

 Specificity: ability to rule out events of another type or false events. It is inversely related to the ratio 

between such false or incorrect events and the total number of events detected of one type: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 −
#𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

#𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠
 

 

5.3 Results: 

In addition to the events triggered by the acoustic signal, each subject blinked between 1 and 4 times during 

the minute of the test. The vertical and horizontal channels of the EOG signal were extracted and analysed by 

an 8-level wavelet decomposition (see an example in Figure 11 and Figure 12), and the intermediate and 8th 

levels were analysed as described in D4.4. 

The confusion table presented in Table 7 shows how many events were correctly and wrongly identified for 

each direction of movement and for blinks. The sensitivity and specificity of the algorithm is reported for 

each type of event in Table 8. 
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Figure 11. Wavelet decomposition of the vertical EOG signal 

 

 

Figure 12. Wavelet decomposition of the horizontal EOG signal 
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Table 7. Confusion table 

 Detected events 

Up Down Left Right Blink No detection 

A
ct

u
a

l 
e
v

en
ts

 Up 23 0 1 1 0 0 

Down 0 29 2 0 0 0 

Left 0 0 23 0 0 0 

Right 0 1 0 26 0 0 

Blink 5 1 0 1 5 2 

No event 1 1 6 2 0 0 

 

 

Table 8. Reliability statistics 

 Up Down Left Right Blink Overall 

Sensitivity 92.0% 93.5% 100% 96.3% 35.7% 88.3% 

Specificity 79.3% 90.6% 71.9% 86.7% 100% 82.8% 

 

The algorithm had a different behaviour for eye movements and blinks. It had a very high sensitivity for the 

detection of movements in all directions (greater than 90%). No type of movement was missed, although 

some were wrongly classified (5% of them on average), and there were also false movement detections; so 

all in all the specificity of the algorithm was between 70% and 90%, depending on the direction of the 

movement. 

However, the algorithm had a poor sensitivity to detect blinks (35.7%), which were often missed or 

misclassified as movements in the upward direction. However, the blink detection was extremely specific 

(100%), i.e. there was no false blink detection. 
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6 Sit-to-stand power 

6.1 Objectives of the validation 

The power exerted to raise the body during the sit-to-stand gesture (STS) is an important indicator of muscle 

strength, which can be used by My-AHA to assess the physical function of users. That variable is calculated 

as the product between the vertical force actuating at the body’s centre of masses (CoM) and its vertical 

velocity. Those measures can be taken from force platforms or motion sensors (either optical or inertial), 

taking into account the following relations between the CoM vertical position (𝑦𝐶𝑜𝑀), velocity (𝑣𝐶𝑜𝑀), 

acceleration (𝑎𝐶𝑜𝑀), and the vertical force actuating on the CoM (𝐹𝐶𝑜𝑀), for a subject standing on ground 

with weight 𝑀: 

𝐹𝐶𝑜𝑀 − 9.81
𝑚

𝑠2
= 𝑀 · 𝑎𝐶𝑜𝑀 = 𝑀 ·

𝑑𝑣𝐶𝑜𝑀

𝑑𝑡
= 𝑀 ·

𝑑2𝑦𝐶𝑜𝑀

𝑑𝑡2
 

The STS power is a transient signal that is often characterised by its peak value (Zijlstra et al. 2010), but to 

obtain a reliable measure of such peak value it is necessary to use accurate instruments and a high control the 

experimental conditions, in order to avoid the accumulation of errors in the derivation/integration and 

composition of the signals. 

For unsupervised measures as the ones expected to be taken during the use of My-AHA, the effect of such 

errors can be minimised by taking a more robust parameter, like the average power during the rising phase. 

As observed in the left panel of Figure 13, there is an previous preparation phase in which the user pushes 

himself on the seat to take impulse and the power signal is negative, until the “seat-off” instant when the 

power starts to increase. After that moment, during the rising phase (marked with thick line) the power signal 

reaches its maximum and decays, until the body reaches its full height. The rising phase ends when the 

power signal approaches zero. 

When the action is measured with a force platform (blue line in the left panel of the figure), the rising phase 

is delimited by the maximum value of the ground reaction force (the instant when the user is transferring the 

full weight of his body to the ground) and the point in which that force matches the user’s weight, after 

decreasing and increasing again (Hirschfeld, Thorsteinsdottir, and Olsson 1999). 

 

Figure 13. Power signal at the CoM compared with the reaction force 

measured at the ground (left) and the acceleration measured at the head. 

In the left panel the rising phase is marked with a thick line. In the right panel, 

the limits of the raising phase are compared with the local minima of the acceleration signal. 

 

The dynamics of the body in the sit-to-stand gesture can be reduced to a simplified model such that the 

average power exerted during the rising phase is proportional to the ratio between the height gained by 

standing up and the time spent in the gesture. This model was analysed by Lindemann et al. (2003) with data 

from force plates. On the other hand, we propose using time landmarks of the acceleration signal measured 

by the inertial sensor (Figure 7 right), whose local minima occur a few instants before the onset and end of 

the rising phase. 
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6.2 Materials and methods 

In a pilot experiment, two young adults (male, 100 kg, and female, 56 kg) repeated the STS gesture both at 

normal speed and as fast as possible — as replicating a timed sit-to-stand test —, such that 5 measures were 

taken at each speed. The experiments were conducted in the laboratories of IBV, and recorded 

simultaneously with synchronised dynamometric platforms and a photogrammetry system 

(Dinascan+Kinescan/IBV), and the inertial sensors integrated into the JINS MEME glasses. All devices were 

working at 100 Hz. 

The average muscle power during the rising phase was calculated for each repetition with four different 

procedures: 

 Full kinematic model: the acceleration and velocities of the body were calculated at each instant, 

(𝑎𝐶𝑜𝑀, 𝑣𝐶𝑜𝑀), and the power signal was computed from them as by Zijlstra et al. (2010); the average 

power was calculated within the limits of the raising phase, obtained from the profile of the power 

signal as described in the previous section. The accelerations and velocities were estimated from 

sensors at the head’s height, using two different measures: 

a) The position of a reflective marker measured by photogrammetry, differentiated two times to 

obtain its vertical acceleration and velocity. 

b) The acceleration measured by the JINS MEME sensor, integrated one time through the 

OFDRI procedure — optimised filtering and direct-reverse integration (Zok, Mazzà, and 

Della Croce 2004) to obtain an unbiased measure of the velocity. 

 Simplified mode, as by Lindemann et al. . (2003): the height gained in the STS gesture was 

calculated as a fixed value from pre-computed standing and sitting heights, considering the 

anthropometry of the subjects, and the time of the raising phase was calculated from characteristic 

points of the measured signals. Those signals were: 

a) The profile of the ground reaction force measured by the platform, as in Lindemann’s 

original article. 

b) The local minima of the acceleration signal measured by the JINS MEME sensor, around the 

its maximum value. 

 

6.3 Results 

The two variants of the full kinematic model were based on the same measures (acceleration and velocity), 

although they were obtained from different sources (the position of the marker measured by 

photogrammetry, and the acceleration measures by the inertial sensor). The gold standard in this case was the 

optical system, which was calibrated with an instrumental error for marker positions around 0.5 mm (Page et 

al. 2006). Figure 14 shows the acceleration, velocity and power signals obtained from each source for one of 

the measurements. It may be seen that they kinematic variables obtained from both sources were similar, 

although the measures derived from the acceleration signal have slightly smaller ranges, and the acceleration 

signal itself was less smooth. Therefore, the power values obtained with the inertial sensor were expected to 

be smaller than the ones obtained by photogrammetry. 
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Figure 14. Kinematic variables (acceleration, velocity and power, in m/s
2
, m/s and W, 

respectively) obtained by differentiation of positions measured by the 

optical system, and by integration of the inertial system. 

 

The resulting estimates of the average power during the raising phase are compared between models and data 

sources in the combined Bland-Altman plot of Figure 15. The values obtained with the simple model and the 

data of the inertial sensor, based on the timing of characteristic points of the signal, are the easiest to 

implement in a system like My-AHA, and were used as reference, such that the values of all the other 

methods are compared against it. 

The points of the plot are clearly grouped in four clusters, which correspond to the different combinations of 

subjects’s weight (power values are proportional to weight, such that the values of the male, heavier subject 

are higher), and speed of the gesture within each subject (higher values for the fast STS gesture). Figure 16 

shows a plot equivalent to that of Figure 15, but where the values are normalised by the user’s weight, so that 

they are mainly clustered by the gesture speed. 

That plot of normalised values shows more clearly some trends of the differences between the reference and 

the other methods. The differences observed with the full model with the photogrammetry data (Full-O), 

which can be deemed as the most precise estimates, were constrained in a range smaller than for the other 

methods, and showed a more random behaviour. The values obtained from the full model using the inertial 

data (Full-I) were systematically smaller, as expected from the comment on Figure 14. The values obtained 

with the simplified model and the force platform data (Simpl-F) were similar in most cases, but diverged in 

the trials of the heavier subject doing the fast gesture. 

Even considering those differences, there was a good agreement among the measures, with an intra-class 

correlation coefficient (type 3) equal to 0.96 for normal speed, and 0.94 for the fast gestures.  
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Figure 15. Difference plot of average STS power obtained with different methods. The reference value 

(in the X-axis) corresponds to the simplified model using the data of the inertial sensor (Simpl-I). The 

data points correspond to the simplified model using force data (Simpl-F), and the full model with data 

of the optical (Full-O) and inertial sensor (Full-I). 

 

 

Figure 16. Difference plot of average STS power, normalised by the participant’s weight. 
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7 Gait complexity 

7.1 Objectives of the validation 

The nonlinear measures of “complexity” are used as way of assessing the variability of gait signals, 

considering that the lack of periodicity of those signals is due to the nonlinear behaviour of neuromuscular 

dynamics, rather than to an amount of “randomness” added to an ideal periodic signal. Among the many 

parameters that can be used to characterise such complexity, we have chosen the measures of recurrence 

quantification analysis (RQA) and multiscale entropy (MSE) of the acceleration signal, which have been 

used in previous literature to evaluate gait in relation with the ageing process (Bisi and Stagni 2016; Riva, 

Bisi, and Stagni 2014). 

As explained in D4.4, the biggest limitation of that kind of analysis is that it requires relatively long signals 

to produce reliable estimates of complexity measures, but on the other hand the computational resources 

consumed by such analysis grows following a power law of the time series length. Therefore, one of the 

objectives of the validation has been to verify that: 

 it is possible to analyse sufficiently long fragments of acceleration data within reasonable limits of 

time and memory consumption for an application that should process thousands of daily data 

records; and 

 real-life data records of older people produce fragments of the necessary length for such an analysis. 

The other objective was to compare measures of RQA and MSE obtained from real-life data records with 

published values from previous studies. 

 

7.2 Material and methods 

7.2.1 Extraction of gait fragments 

The minimum length of continuous gait periods that should be considered for the analysis was derived from 

published data of the number of strides required to obtain reliable estimates of gait complexity. According to 

the study published by Riva, Bisi, and Stagni (2014), RQA parameters and MSE (for scales equal or lower 

than 4) of the vertical acceleration signal are reliable for records that encopass more than 10 strides; and with 

20 strides or more the same measures of anterior-posterior acceleration also have excellent reliability. Those 

reference values were compared with the statistics of walking activity recorded for 10 subjects during 1 

month in April-May 2015 with Smart Companion. From that comparison we defined a minimum time period 

that should be considered to apply RQA and MSE measures. 

With that minimum fragment length, we analysed continuous data of two older subjects (male 74 years, 

female 70 years)  during 4 days, taken by DSHS in May 2016. Continuous gait periods over that length were 

obtained by threshold selection of the standard deviation and the short-time Fourier Transform (STFT) of the 

acceleration signal (Brajdic and Harle 2013), and we assessed the amount of continuous records that might 

be obtained with those data. 

7.2.2 Measure of Multiscale Entropy 

The original MSE algorithm published by Costa et al. (2002) has an important drawback when applied to 

uncontrolled measures, which is the risk of obtaining unstable or even undefined results. This risk is 

potentially higher in unassisted continuous measures, where there is less control of the signals. In order to 

reduce this risk, instead of the original MSE algorithm we computed the “Refined Composite Multiscale 

Entropy” (RCMSE), which has been demonstrated to be a robust estimate of MSE, and the “Modified 

Multiscale Entropy” (MMSE), which is even more robust and stable — but more expensive too (Humeau-

Heurtier 2015). Their results were compared with the 4 days of data recorded by DSHS, to decide whether 

RCMSE would be a sufficiently robust and stable measure, or if it is necessary to resort to MMSE. 



Deliverable D4.5 MY-AHA 

© MY-AHA consortium 2016 - 2019 Page 31 of (38)  

 

7.2.3 Assessment of RQA and MSE values 

The RQA parameters selected for the analysis were: Recurrence Rate (RR), Determinism (DET), Average 

length of recurrent patterns (L), Divergence (DIV), Entropy (ENT), Laminarity (LAM) and Trapping Time 

(TT). MSE was analysed at scales between τ=1 and τ=8, as well as the “Complexity Index” (CI) obtained as 

cumulative sum of MSE values. 

The values of RQA parameters and MSE estimates obtained from the 4 days of continuous, real-life data 

recorded by DSHS were compared with values published from previous studies in controlled settings (Bisi 

and Stagni 2016; Riva, Bisi, and Stagni 2014), to assess whether the results that might be obtained by 

continuous monitoring with devices connected to My-AHA might be representative of the results that are 

contained in laboratory studies that report differences in complexity measures related to the ageing process 

and gait anomalies. 

In addition, we analysed the interquartile-median ratio (IMR) of the results within continuous gait periods of 

comparable length, in order to re-assess the reliability of those measures in a real-life setting. The IMR was 

the metric used by (Riva, Bisi, and Stagni 2014) to assess the repeatability of gait complexity measures in a 

controlled setting, considering that an IMR equal or smaller than 0.1 indicated an “excellent” repeatability. 

7.3 Results 

7.3.1 Extraction of gait fragments 

Figure 17 shows that among older adults using the Smart Companion there was a relatively narrow band of 

gait cadences (running included), contained between 24 and 18 steps/minute. The average was 87.6 

steps/min (std. dev. 6.6 steps/min). 

 

Figure 17. Relation between walking time and number of steps from Smart Companion data 

 

Those data showed that gait fragments longer than 10 seconds may be expected to surpass the minimum 

threshold of 10 strides. Considering the slowest gait cadences, 40 seconds should suffice to obtain more than 

20 steps. To fall in the safe side, we defined a minimum length of analysable gait fragments equal to 1 

minute (60 seconds). 

The continuous acceleration data recorded by DSHS during 4 days of two subjects contained 8 hours of 

walking activity distributed in 53 episodes longer than 1 minute. The average length of those episodes was 

6.9 minutes (std. dev. 13.0 minutes), markedly biased towards shorter episodes (51% were 1-minute long). 

Figure 18 shows the band of frequency spectra for such 1-minute gait fragments in the data from DSHS (in 

log-log scale). The average line and the limits of the bands are computed in a logarithmic scale (i.e. the 

average line is the geometric mean of the spectra measured at each fragment, and the limits correspond to the 

average multiplied or divided by a factor proportional to the standard deviation at each frequency point). It 
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can be seen that the dominant frequency is contained between 1 and 2 Hz, which corresponds to an average 

cadence similar but slightly faster than the reference data recorded by Smart Companion.  

 

Figure 18. Band of frequency spectra of vertical acceleration during 1-minute gait fragments 

 

The computation of RQA and MSE was implemented in Julia, a high-performance language for numerical 

computing (Edelman 2015). Processing each 1-minute fragment consumed 208 MB for RQA, 1 GB for 

RCMSE, and 7.5 GB for MMSE at eight scales; this took 0.6 s, 1.5 s and 20 s respectively, in a PC with Intel 

Core i3-4100M processor @ 2.5 GHz and 8 GB RAM, and Linux operating system (Ubuntu 16.04, Julia 

version 0.5.0). Memory and time consumption for RCMSE and MMSE grew with the number of scales 

involved, although with a converging rate for RCMSE, and diverging for MMSE (see Figure 19). 

 

 

Figure 19. Memory and time consumption calculated for RCMSE (left) and MMSE (right) 

 

7.3.2 Measure of Multiscale Entropy 

Figure 20 shows the differences between RCMSE and MMSE for the extracted 1-minute fragments of 

vertical acceleration at different scales from τ=1 and τ=8. It may be observed that the dispersion of those 

differences grows proportionally to the size of the scale. Specifically, we observed a linear relation between 

the standard deviation of the difference (𝜎𝑅𝐶𝑀𝑆𝐸−𝑀𝑀𝑆𝐸) and the scale (𝜏), according to the equation: 

𝜎𝑅𝐶𝑀𝑆𝐸−𝑀𝑀𝑆𝐸  ~𝑘(𝜏 − 1) 

That equation fitted the observed data with a factor 𝑘 = 4.2 · 10−3 (standard error 4.3 ⋅ 10−4, 𝑅2 = 0.93). 
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Figure 20. Difference between RCMSE and MMSE of vertical acceleration 

 

In order to assess whether the difference between RCMSE and MMSE had any kind of bias (possibly 

depending on the scale, since at τ=1 there is no difference), a weighted linear model (accounting for the 

heteroscedasticity of the data) was fit to the differences, of the type: 

𝑅𝐶𝑀𝑆𝐸 − 𝑀𝑀𝑆𝐸 ~ 𝛽0 + 𝛽1𝜏 + 𝜀  ∶    𝜀~𝑁(0, 𝑘𝜏) 

The statistics of the fit (Table 9) showed that no parameter of the model was significantly different from 

zero. Therefore, there was no significant bias, and given the small size of the difference with respect to the 

expected values of either RCMSE or MMSE (see the next section), we can conclude that RCMSE is a 

sufficiently accurate and robust estimate of sample entropy, and may be preferred to MMSE, since it is 

several times faster (see the previous section). 

 

Table 9. Statistics of the linear model fitted to the RCMSE-MMSE difference 

 Estimate Std. error t(138) p-value 

Intercept (𝛽0) -1.08·10
-3

 2.24·10
-3

 -0.483 0.630 

Slope (𝛽1)  0.39·10
-4

 6.15·10
-4

  0.635 0.527 

 

7.3.3 Assessment of RQA and MSE values 

The observed values of RQA parameters and the selected measures of MSE (RCMSE and the complexity 

index, CI), are summarised in Table 10 and Table 11. The curves of RCMSE as a function of the scale are 

also plotted in Figure 21 for greater clarity. 

 

Table 10. Summary of RQA parameters for 1-minute gait periods 

 Vertical Anterior-posterior 

 Mean (Std. dev.) Mean (Std. dev.) 

RR (%) 2.66 (1.11) 5.24 (6.77) 

DET (%) 83.55 (6.76) 75.32 (9.95) 

L (ms*) 124.20 (24.46) 105.72 (46.63) 

DIV (×10
-3

) 1.16 (5.45) 13.26 (4.75) 

ENT 1.93 (0.22) 1.69 (0.39) 

LAM (%) 81.16 (10.86) 83.30 (7.55) 

TT (ms*) 74.42 (21.04) 105.17 (67.34) 

(*) L and TT are usually expressed as a number of data points. They are transformed into time 

units to make them comparable with results of measures taken at different sampling rates. 
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Table 11. Summary of RCMSE and CI for 1-minute gait periods 

 RCMSE Vertical RCMSE AP CI Vertical CI AP 

 Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) 

τ=1 0.499 (0.049) 0.594 (0.173) 0.499 (0.049) 0.593 (0.173) 

τ=2 0.658 (0.088) 0.945 (0.279) 1.157 (0.132) 1.539 (0.451) 

τ=3 0.784 (0.138) 1.173 (0.320) 1.941 (0.263) 2.713 (0.769) 

τ=4 0.869 (0.179) 1.291 (0.329) 2.810 (0.430) 4.004 (1.092) 

τ=5 0.907 (0.199) 1.347 (0.342) 3.717 (0.614) 5.350 (1.427) 

τ=6 0.927 (0.199) 1.368 (0.366) 4.643 (0.802) 6.715 (1.785) 

τ=7 0.917 (0.192) 1.371 (0.382) 5.560 (0.985) 8.090 (2.160) 

τ=8 0.873 (0.183) 1.371 (0.368) 6.433 (1.157) 9.461 (2.520) 

 

 

Figure 21. RCMSE mean curves (± std. dev.) of vertical (left) and anterior-posterior (right) 

acceleration 

 

The study with the greatest amount of numeric details about RQA and MSE measures of gait dynamics was 

published by Riva et al. (2014), who reported greater RR (between 10% and 15%, between 3 and 5 times 

greater than the ones observed by us), but DET and L values that agreed with our results (considering the 

differences in sampling rates between studies). 

The RCMSE values observed by us also coincided with previously reported values of MSE (only given for 

scales equal or smaller than 4 or 6) in the case of vertical acceleration, but we obtained greater values in the 

anterior-posterior direction. 

The distributions of IMR are shown in Figure 22 (for RQA parameters) and Figure 23 (for RCMSE and CI). 

“Excellent” values (IMR < 10%) were always obtained for DET, ENT and LAM in both directions (vertical 

and anterior-posterior), and also for TT of vertical acceleration. Setting a reference value of IMR < 15%, we 

can also consider L in both directions, as well as RCMSE and CI values for scales τ ≤ 4 (let aside outliers).   
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Figure 22. IMR of RQA parameters for vertical (left) and anterior-posterior (right) acceleration 

 

 

 

Figure 23. IMR of RCMSE and CI of vertical (left) and anterior-posterior (right) acceleration 
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8 Conclusions 

The six algorithms selected for validation have been tested in pilot experiments in controlled conditions to 

check their performance, and yielded the following results: 

 The analysis of HRV with the Mio wristband resulted to be reliable for long-term and low-

frequency features (SDNN and VLF, respectively). On the other hand short-term and high frequency 

features, related to quick changes in the beat-to-beat time intervals, could not be successfully 

retrieved from the wristband, regardless of the type of activity performed by the subjects (quiet or 

walking/running). This was mainly attributable to the filters implemented in the acquisition software 

in order to reduce the effects of noise and movement-induced artefacts, since the sensor itself is of 

high-quality profile compared to similar products in the market. The short term/high frequency 

information of the NN signal is just removed from the signal delivered by the sensor, so it is not 

possible to obtain those features. 

 Speech analysis turned out to be very reliable to evaluate the fatigue of the subjects, compared with 

the scores of the Karolinska Sleepiness Scale, even considering small changes in the state of the 

subjects. The KSS scores predicted by the speech analysis were consistent with the self-reported 

values using the standard questionnaires, but presented a smaller inter-subjects variability. In other 

words, the analysis of speech features produced estimates of the subjects’ fatigue that were less 

dependent on the difference between subjects than relying on their self report. The differences 

between the self-reported and predicted KSS scores were random, homogeneous and unbiased errors 

of the same order of magnitude as the variability within subjects. 

 The activity recognition algorithm with EOG data from the JINS MEME glasses could 

discriminate between reading, watching TV and drinking, with a success rate around 86%, much 

better than popular basic classifiers. The outcomes differed depending on the training data and 

codebooks, and it was detected that there may be problems with noise and artefacts produced by 

manipulation of the glasses. 

 The detection of eye movements and blinks with EOG data was also successful, with very high 

sensitivities and good specificities for the recognition of directional movements. On the other hand, 

the sensitivity to detect blinks is smaller, since they are faster actions that may be missed due to the 

limited sampling rate of the glasses (even in the academic version), and show EOG features similar 

to the vertical movement of the eyes in the upper direction. As happens with the algorithm for 

activity recognition, the detrimental effect of motion artefacts should be considered. (There are other 

methods aimed at reducing those artefacts, presented in D4.3). 

 The analysis of sit-to-stand power yielded promising results, even though measuring the power 

signal is a complex challenge, and different methods with high-quality instruments that could be 

considered “gold standards” may provide different results. A simple approach that might be 

implemented in My-AHA, based on timing features of the acceleration signal, provided values of the 

average power during the rising phase that were in the same range as the gold standard measured 

with photogrammetry. 

 The measure of gait complexity proved to be feasible in terms of time and computer resources 

expenditure, in spite of the big amounts of data that have to be processed, when gait episodes are 

analysed in one-minute intervals. It has been demonstrated that RQA and MSE measures from real-

life data are repeatable when analysed in such intervals, and are also consistent with previous results 

reported in literature. 

The pilot experiments reported in this deliverable have some limitations: in most cases have been conducted 

with small subject samples, except for the speech analysis and the activity recognition, which required big 

data bases to train the machine learning algorithms, and except for gait analysis, the participants in the pilots 

were young adults. The differences in the measures and behaviours between young and older adults must be 

taken into account for further developments in My-AHA. The validation of the speech recognition algorithm 

was also limited to German-speaking subjects. 

These results, together with other technical aspects that have been evaluated in technical discussions, will be 

analysed by My-AHA’s Consortium to make future decisions regarding the development of the platform, and 

the sensors and signal pre-processing modules that will be connected to it. 
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